

 Navigation

 	
 index

 	
 next |

 	porekit 0.1.0alpha documentation

Porekit

A pythonic toolkit for working with Oxford Nanopore Data

This is a kit of tools for handling data from Oxford Nanopore Technologies’ sequencers,
built for integration into the scientific Python ecosystem, including Jupyter
Notebook.

This library is meant for use both as an interactive toolkit for use in Jupyter
notebooks, as well as custom scripts. In the future a command line tool may be
added as well.

Feature requests and bug reports are wellcome. Please use the github issues.

	Porekit
	Main features

	Planned

	Credits

	Installation
	Use Python 3.5!

	Introduction to Porekit-Python
	Disclaimer

	General philosophy and goal of Porekit-Python

	What Oxford Nanopore Data looks like

	Gathering Metadata

	Grouping by Device, ASIC and Run Ids

	Plotting Data
	Read length distribution

	Reads over time

	Yield Curves

	Template length vs complement length

	Occupancy

	Customizing plots

	Contributing
	Types of Contributions

	Get Started!

	Credits
	Development Lead

	Contributors

	History

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	porekit 0.1.0alpha documentation

Porekit

A pythonic toolkit for working with Oxford Nanopore Data

[image: Documentation Status]
 [https://readthedocs.org/projects/porekit-python/?badge=latest]This is a kit of tools for handling data from Oxford Nanopore Technologies’ sequencers,
built for integration into the scientific Python ecosystem, including Jupyter
Notebook.

This library is meant for use both as an interactive toolkit for use in Jupyter
notebooks, as well as custom scripts. In the future a command line tool may be
added as well.

Feature requests and bug reports are wellcome. Please use the github issues.

	Notes from original author and maintainer:

	
	I am not affiliated with Oxford Nanopore Technologies

	Neither am I affiliated or in contact with any participant in the
MinION MAP

	This work has been done without any “official documentation”, and I don’t
even know if there is such a thing

	The documentation of porekit represents my best guess about how MinION
sequencing and the file format works. It probably contains many factual
errors or misinterpretations!

	For me, porekit is mainly an educational effort to learn about nanopore
sequencing without having access to it.

Main features

	
	Gathering Metadata about reads

	
	Use as Pandas DataFrame

	Export to many different formats

	Helper functions for custom scripts

	Plots
* Read length distribution
* Channel Occupancy over time
* reads over time
* Yield over time
* template length vs complement length

Planned

	
	Jupyter integration

	
	Interactive squiggle viewer

	Free software: ISC license

	Documentation: https://porekit-python.readthedocs.org.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

 Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	porekit 0.1.0alpha documentation

Installation

Use Python 3.5!

I recommend installing this inside an Anaconda virtual environment. Anaconda
is a distribution of common scientific Python packages and the conda package
manager simplifies handling binary dependencies for Python and R packages.

As Porekit is at a very early state in its development, you should probably
clone this github repository and run python setup.py develop.

 Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	porekit 0.1.0alpha documentation

In [1]:

import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
%matplotlib inline

Introduction to Porekit-Python

Disclaimer

Porekit is the result of my personal interest in nanopore sequencing.
I’m not affiliated with Oxford Nanopore Technologies, or any MAP
participant. This means a lot of the factual information presented in
this notebook may be wrong.

General philosophy and goal of Porekit-Python

This library is meant to provide tools for interactively exploring
nanopore data inside the Jupyter notebook, and for writing simple
scripts or more complex software dealing with nanopore data. Therefore a
lot of attention has been given to make interactive use easy and
painless, and to keep the code in the background flexible and exposed to
library users.

What Oxford Nanopore Data looks like

The MinION sequencer is attached to a laptop running MinKnow. This
program connects directly to the MinION device and tells it what to do.
Optionally, third party software can connect to an API inside the
primary software to remote control the sequencing process. That is not
covered here, though.

In a nutshell, nanopore sequencing works by dragging a DNA molecule
through a tiny pore in a membrane. As the DNA passes, the voltage
difference between the two sides of the membrane change, depending on
the electrochemical properties of the passing nucleotides. This means
that, at the core of the nanopore data, there is a timeseries of voltage
measurements, which is called the “squiggle”.

The process to convert the squiggle into a sequence of DNA letters is
called base calling. The current MinKnow software uploads the squiggle
to Metrichor servers, which perform the base calling, and send the
result back to the user’s computer.

The result of a sequencing run is a collection of FAST5 files, each
containing data on one molecule of DNA which passed through one of
currently 512 channels in the flowcell. These files are stored on disk,
usually in one directory per run. A convention seems to be to name each
file with a unique and descriptive string:

In [4]:

!ls /home/andi/nanopore/GenomeRU2/downloads/pass/ | tail -n 10

PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file64_strand.fast5
PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file67_strand.fast5
PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file6_strand.fast5
PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file74_strand.fast5
PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file86_strand.fast5
PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file90_strand.fast5
PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file92_strand.fast5
PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file95_strand.fast5
PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file97_strand.fast5
PLSP57501_20151028_Mk1_lambda_RU9_2752_1_ch9_file9_strand.fast5

These files belong to data publishd by Quick et al.
http://europepmc.org/abstract/MED/25386338;jsessionid=ijHIHUVXlcpxeTzVUihz.0

Gathering Metadata

The following snippet will extract meta data from all of my downloaded
nanopore data, searching directories recursively.

In [6]:

import porekit
everything = porekit.gather_metadata("/home/andi/nanopore/")

The result is a Pandas DataFrame object, which is too big to comfortably
view in its entirety, but still comparatively “small data”. Here is a
subset of it:

In [7]:

everything[['asic_id', 'channel_number', 'template_length', 'complement_length']].head()

Out[7]:

 	
 	asic_id
 	channel_number
 	template_length
 	complement_length

 	filename
 	
 	
 	
 	

 	PLSP57501_default_sample_id_2124_1_ch186_file3_strand.fast5
 	3442015863
 	186
 	NaN
 	NaN

 	PLSP57501_default_sample_id_2124_1_ch324_file15_strand.fast5
 	3442015863
 	324
 	NaN
 	NaN

 	PLSP57501_default_sample_id_2124_1_ch141_file3_strand.fast5
 	3442015863
 	141
 	NaN
 	NaN

 	PLSP57501_default_sample_id_2124_1_ch103_file2_strand.fast5
 	3442015863
 	103
 	NaN
 	NaN

 	PLSP57501_default_sample_id_2124_1_ch386_file13_strand.fast5
 	3442015863
 	386
 	NaN
 	NaN

All of the columns available:

In [8]:

everything.columns

Out[8]:

Index(['absolute_filename', 'format', 'run_id', 'asic_id', 'version_name',
 'device_id', 'flow_cell_id', 'asic_temp', 'heatsink_temp',
 'channel_number', 'channel_range', 'channel_sampling_rate',
 'channel_digitisation', 'channel_offset', 'has_basecalling',
 'basecall_timestamp', 'basecall_version', 'basecall_name',
 'has_template', 'template_length', 'has_complement',
 'complement_length', 'has_2D', '2D_length', 'read_start_time',
 'read_duration', 'read_end_time'],
 dtype='object')

The file names are used as an index, because they are assumed to be
unique and descriptive. Even when the absolute/physical location of the
dataset changes, data or analytics based on these filenames are still
useful.

The philosopy of porekit is to gather the metadata once and then store
it in a different format. This makes it easier to analyse the metadata
or use it in another context, for example with alignment data.

The following will store the metadata in an HDF5 File:

In [10]:

everything.to_hdf("everything.h5", "meta")

/home/andi/anaconda3/lib/python3.5/site-packages/pandas/core/generic.py:1096: PerformanceWarning:
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed,key->block3_values] [items->['absolute_filename', 'format', 'run_id', 'asic_id', 'version_name', 'device_id', 'flow_cell_id', 'basecall_version', 'basecall_name', 'has_template', 'has_complement', 'has_2D']]

 return pytables.to_hdf(path_or_buf, key, self, **kwargs)

Grouping by Device, ASIC and Run Ids

In [13]:

g = everything.groupby(['device_id', 'asic_id', 'run_id'])

In [14]:

df = g.template_length.agg([lambda v: len(v), np.mean, np.max])
df.columns = ['Count', 'Mean template length', 'Max template_length']
df

Out[14]:

 	
 	
 	
 	Count
 	Mean template length
 	Max template_length

 	device_id
 	asic_id
 	run_id
 	
 	
 	

 	MN02178
 	32748
 	a96198c51610f2df5381b3da4378dba90cb4635b
 	8107.0
 	1036.574442
 	3028.0

 	MN02297
 	217752539
 	aeec32a5b6567efde499475723d41e2370444ad1
 	160992.0
 	4999.441396
 	116519.0

 	MN15179
 	152762368
 	8da1985a781386de16342edd83dc2fb8c7a0236a
 	57830.0
 	2174.129721
 	383927.0

 	d636d617db78c8db8c911f58b869d32395cff3e8
 	65648.0
 	NaN
 	NaN

 	3442015863
 	4918830b4e8663a6ecbaefd9abffa68fe92a0736
 	4137.0
 	NaN
 	NaN

 	4244960115
 	05fb4df1edb44cce039fbc7f609ee0eb4614229e
 	20032.0
 	856.956434
 	60364.0

 	c91c9d31084bb5e2f0bf8f14064c8be2445eeb0e
 	26047.0
 	1330.689296
 	91786.0

 	MN16528
 	3571011476
 	69ed1ea007613207aa5a162012197a9ffe806e9f
 	68.0
 	NaN
 	NaN

As you can see, I have downloaded several nanopore sets from ENA. These
are mostly incomplete sets, since I was interested more in the variety
of data rather than the completeness. You can easily use wget to
download a tarball from ENA, then extract the partial download. The last
file will be truncated, but the rest is usable.

 Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	porekit 0.1.0alpha documentation

In [1]:

import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
import porekit
%matplotlib inline

Plotting Data

Visualizing the metadata is very useful to get a first look at the
nature and quality of the run.

First we need a DataFrame with the meta data. You can make one with
porekit.gather_metadata once, and then load it later from a hdf file
or something similar.

In [2]:

df = pd.read_hdf("../examples/data/ru9_meta.h5", "meta")

Read length distribution

In [3]:

porekit.plots.read_length_distribution(df);

[image: _images/02_Plots_4_0.png]

This is a histogram showing the distribution of read length. In this
case it’s the max of template and complement length. This plots ignores
a small part of the longest reads in order to be more readable.

Reads over time

In [4]:

porekit.plots.reads_vs_time(df);

[image: _images/02_Plots_7_0.png]

Yield Curves

In [5]:

porekit.plots.yield_curves(df);

[image: _images/02_Plots_9_0.png]

This plot shows the sequence yields in Megabases over time.

Template length vs complement length

In [6]:

porekit.plots.template_vs_complement(df);

[image: _images/02_Plots_12_0.png]

In the standard 2D library preparation, a “hairpin” is attached to one
end of double stranded DNA. Then, when the strand goes through the
nanopore, first one strand translocates, then the hairpin and finally
the complement. Because template and complement both carry the same
information, they can be used to improve accuracy of the basecalling.

However, not all molecules have a hairpin attached, not all have a
complement strand, and in most cases, the template and complement length
does not match completely. This can be seen in the plot above, where
most data points are on a diagonal with template and complement length
being almost the same. There are more points under the diagonal than
above it, and there is a solid line at the bottom, showing reads with no
complement.

Occupancy

In [7]:

porekit.plots.occupancy(df);

[image: _images/02_Plots_15_0.png]

This shows the occupancy of pores over time. In General, pores break
over time, which is a major factor in limiting the total yield over the
lifetime of a flowcell.

Customizing plots

The plots inside porekit.plots are designed to work best inside the
Jupyter notebook when exploring nanopore data interactively, and showing
nanopore data as published notebooks or presentations. This is why they
use colors and a wide aspect ratio.

But the plots can be customized somewhat using standard matplotlib.
Every plot function returns a figure and an axis object:

In [8]:

f, ax = porekit.plots.read_length_distribution(df)
f.suptitle("Hello World");
f.set_figwidth(6)

[image: _images/02_Plots_18_0.png]

Sometimes you want to subdivide a figure into multiple plots. You can do
it like this:

In [9]:

f, axes = plt.subplots(1,2)
f.set_figwidth(14)
ax1, ax2 = axes
porekit.plots.read_length_distribution(df, ax=ax1);
porekit.plots.yield_curves(df, ax=ax2);

[image: _images/02_Plots_20_0.png]

If you want to go beyond those relatively simple customizations, you may
want to just copy and paste some code from porekit/plots.py and go
from there. The plots are relatively simple overall.

 Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	porekit 0.1.0alpha documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/akloster/porekit-python/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

porekit could always use more documentation, whether as part of the
official porekit docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/akloster/porekit-python/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up porekit-python for local development.

	Fork the porekit-python repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/porekit-python.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv porekit-python
$ cd porekit-python/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 porekit-python tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

 Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	porekit 0.1.0alpha documentation

Credits

Development Lead

	Andreas Klostermann <andreasklostermann@gmail.com>

Contributors

None yet. Why not be the first?

 Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	porekit 0.1.0alpha documentation

History

 Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	porekit 0.1.0alpha documentation

Index

 Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/file.png

_static/comment-close.png

.ipynb_checkpoints/02_Plots-checkpoint.html

 Navigation

 		
 index

 		porekit 0.1.0alpha documentation »

In [1]:

import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
import porekit
%matplotlib inline

Plotting Data

Visualizing the metadata is very useful to get a first look at the
nature and quality of the run.

First we need a DataFrame with the meta data. You can make one with
porekit.gather_metadata once, and then load it later from a hdf file
or something similar.

In [2]:

df = pd.read_hdf("../examples/data/ru9_meta.h5", "meta")

Read length distribution

In [3]:

porekit.plots.read_length_distribution(df);

[image: ../_images/.ipynb_checkpoints_02_Plots-checkpoint_4_0.png]

This is a histogram showing the distribution of read length. In this
case it’s the max of template and complement length. This plots ignores
a small part of the longest reads in order to be more readable.

Reads over time

In [4]:

porekit.plots.reads_vs_time(df);

[image: ../_images/.ipynb_checkpoints_02_Plots-checkpoint_7_0.png]

Yield Curves

In [5]:

porekit.plots.yield_curves(df);

[image: ../_images/.ipynb_checkpoints_02_Plots-checkpoint_9_0.png]

This plot shows the sequence yields in Megabases over time.

Template length vs complement length

In [6]:

porekit.plots.template_vs_complement(df);

[image: ../_images/.ipynb_checkpoints_02_Plots-checkpoint_12_0.png]

In the standard 2D library preparation, a “hairpin” is attached to one
end of double stranded DNA. Then, when the strand goes through the
nanopore, first one strand translocates, then the hairpin and finally
the complement. Because template and complement both carry the same
information, they can be used to improve accuracy of the basecalling.

However, not all molecules have a hairpin attached, not all have a
complement strand, and in most cases, the template and complement length
does not match completely. This can be seen in the plot above, where
most data points are on a diagonal with template and complement length
being almost the same. There are more points under the diagonal than
above it, and there is a solid line at the bottom, showing reads with no
complement.

Occupancy

In [7]:

porekit.plots.occupancy(df);

[image: ../_images/.ipynb_checkpoints_02_Plots-checkpoint_15_0.png]

This shows the occupancy of pores over time. In General, pores break
over time, which is a major factor in limiting the total yield over the
lifetime of a flowcell.

Customizing plots

The plots inside porekit.plots are designed to work best inside the
Jupyter notebook when exploring nanopore data interactively, and showing
nanopore data as published notebooks or presentations. This is why they
use colors and a wide aspect ratio.

But the plots can be customized somewhat using standard matplotlib.
Every plot function returns a figure and an axis object:

In [8]:

f, ax = porekit.plots.read_length_distribution(df)
f.suptitle("Hello World");
f.set_figwidth(6)

[image: ../_images/.ipynb_checkpoints_02_Plots-checkpoint_18_0.png]

Sometimes you want to subdivide a figure into multiple plots. You can do
it like this:

In [9]:

f, axes = plt.subplots(1,2)
f.set_figwidth(14)
ax1, ax2 = axes
porekit.plots.read_length_distribution(df, ax=ax1);
porekit.plots.yield_curves(df, ax=ax2);

[image: ../_images/.ipynb_checkpoints_02_Plots-checkpoint_20_0.png]

If you want to go beyond those relatively simple customizations, you may
want to just copy and paste some code from porekit/plots.py and go
from there. The plots are relatively simple overall.

 © Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

_static/down.png

_static/ajax-loader.gif

_static/up.png

_images/.ipynb_checkpoints_02_Plots-checkpoint_12_0.png
Complement length

‘Template vs complement length

20 o0 @00 @0 10000
Template length

_static/down-pressed.png

_images/.ipynb_checkpoints_02_Plots-checkpoint_18_0.png
200

a0

Hello World

00
Read length

00

10000

2000

_static/comment.png

_images/02_Plots_20_0.png
200

a0

00
Read length

00

10000

2000

ield (in Mb)

10

—=»
2o — Template
— Complement.
100
El
®
E
El
o
o 1

3
“Time (in hours)

_images/02_Plots_7_0.png
Number of reads vs time

3
Time (in hours)

_images/.ipynb_checkpoints_02_Plots-checkpoint_20_0.png
200

a0

00
Read length

00

10000

2000

ield (in Mb)

10

—=»
2o — Template
— Complement.
100
El
®
E
El
o
o 1

3
“Time (in hours)

_images/02_Plots_12_0.png
Complement length

‘Template vs complement length

20 o0 @00 @0 10000
Template length

search.html

 Navigation

 		
 index

 		porekit 0.1.0alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

usage.html

 Navigation

 		
 index

 		porekit 0.1.0alpha documentation »

Usage

To use porekit in a project:

import porekit-python

 © Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

_images/.ipynb_checkpoints_02_Plots-checkpoint_15_0.png
Channel number

E

20

&

‘Occupancy over time:

Time (in minutes)

_static/plus.png

_images/02_Plots_18_0.png
200

a0

Hello World

00
Read length

00

10000

2000

porekit.html

 Navigation

 		
 index

 		porekit 0.1.0alpha documentation »

porekit package

Submodules

porekit.porekit module

Module contents

 © Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

_images/02_Plots_15_0.png
Channel number

E

20

&

‘Occupancy over time:

Time (in minutes)

_images/.ipynb_checkpoints_02_Plots-checkpoint_9_0.png
Yield (in Mb)

10

—»

2o — Template
— Conplement

100

El

®

E

El

3
“Time (in hours)

modules.html

 Navigation

 		
 index

 		porekit 0.1.0alpha documentation »

porekit

		porekit package
		Submodules

		porekit.porekit module

		Module contents

 © Copyright 2016, Andreas Klostermann.
 Created using Sphinx 1.3.5.

_images/.ipynb_checkpoints_02_Plots-checkpoint_4_0.png
Read length distioution

2000

_images/02_Plots_9_0.png
Yield (in Mb)

10

—»

2o — Template
— Conplement

100

El

®

E

El

3
“Time (in hours)

_static/minus.png

_images/02_Plots_4_0.png
Read length distioution

2000

_images/.ipynb_checkpoints_02_Plots-checkpoint_7_0.png
Number of reads vs time

3
Time (in hours)

_static/up-pressed.png

